8分钟科普“同城游510k辅助器”(其实确实有挂)

亲,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款...

亲,2024微乐麻将插件安装这款游戏可以开挂的 ,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌 ,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂 ,实际上这款游戏确实是有挂的,添加客服微信【】安装软件.

点击添加客服微信

微信打麻将是一款非常流行的棋牌游戏,深受广大玩家的喜爱 。在这个游戏中 ,你需要运用自己的智慧和技巧来赢取胜利,同时还能与其他玩家互动。

在游戏中,有一些玩家为了获得更高的胜率和更多的金币而使用了开挂神器。开挂神器是指那些可以让你在游戏中获得不公平优势的软件或工具 。

如果你也想尝试使用微信麻将开挂工具 ,那么可以按照以下步骤进行下载和安装:

软件介绍:

1、99%防封号效果,但本店保证不被封号 。

2 、此款软件使用过程中,放在后台 ,既有效果。

3、软件使用中,软件岀现退岀后台,重新点击启动运行。

4、遇到以下情况:游/戏漏闹洞修补 、服务器维护故障 、政/府查封/监/管等原因 ,导致后期软件无法使用的 。

2024微乐麻将插件安装操作使用教程:
1.通过添加客服微安装这个软件.打开

2.在“设置DD辅助功能DD微信麻将开挂工具"里.点击“开启".
3.打开工具.在“设置DD新消息提醒"里.前两个选项“设置"和“连接软件"均勾选“开启".(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉.“消息免打扰"选项.勾选“关闭".(也就是要把“群消息的提示保持在开启"的状态.这样才能触系统发底层接口.)
5.保持手机不处关屏的状态.
6.如果你还没有成功.首先确认你是智能手机(苹果安卓均可).其次需要你的微信升级到新版本.

本司针对手游进行,选择我们的四大理由:
1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:
2、自动连接,用户只要开启软件 ,就会全程后台自动连接程序 ,无需用户时时盯着软件。
3 、安全保障,使用这款软件的用户可以非常安心,绝对没有被封的危险存在。
4、快速稳定 ,使用这款软件的用户肯定是土豪 。安卓定制版和苹果定制版,一年不闪退

第一章

1,氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在α-碳上。

2 ,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。

3 ,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成

不需要从食物中获得的氨基酸 。

4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。

5 ,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成**)化合物的反应。

6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合 ,除去一分子水形成的酰氨键 。

7 ,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。

8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。

9,层析(chromatography):按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术 。

10 ,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱

11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术 。

12 ,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。

13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质 ,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术 。

14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。

15 ,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。

16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳 。SDS-PAGE只是按照分子的大小 ,而不是根据分子所带的电荷大小分离的。

17 ,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处 ,即梯度足的某一pH时,就不再带有净的正或负电荷了。

18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合 ,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离) 。经染色得到的电泳图是二维分布的蛋白质图。

19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰 ,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环 。

20 ,同源蛋白质(homologous protein):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

第二章

1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的 。构形的改变往往使分子的光学活性发生变化 。

2 ,构象(conformation):指一个分子中 ,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性 。

3 ,肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的4个取代成分:羰基氧原子 ,酰氨氢原子和两个相邻α-碳原子组成的一个平面单位。

4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列 。常见的有二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。

5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象 。三级结构是在二级结构的基础上进一步盘绕 ,折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力和盐键维持的。

6 ,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构 。实际上是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。

7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状 ,一般都是右手螺旋结构 ,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键 。在古典的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基 ,每个残基沿着螺旋的长轴上升0.15nm.

8, β-折叠(β-sheet): 蛋白质中常见的二级结构,是由伸展的多肽链组成的 。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(由N到C方向)或者是反平行排列(肽链反向排列)。

9,β-转角(β-turn):也是多肽链中常见的二级结构,是连接蛋白质分子中的二级结构(α-螺旋和β-折叠) ,使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基 。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往是甘氨酸。这两种转角中的第二个残侉大都是脯氨酸 。

10,超二级结构(super-secondary structure):也称为基元(motif).在蛋白质中 ,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用 ,形成有规则的,在空间上能辨认的二级结构组合体。

11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合 。

12 ,纤维蛋白(fibrous protein):一类主要的不溶于水的蛋白质 ,通常都含有呈现相同二级结构的多肽链许多纤维蛋白结合紧密,并为 单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。

13 ,球蛋白(globular protein):紧凑的,近似球形的,含有折叠紧密的多肽链的一类蛋白质 ,许多都溶于水。典形的球蛋白含有能特异的识别其它化合物的凹陷或裂隙部位 。

14,角蛋白(keratin):由处于α-螺旋或β-折叠构象的平行的多肽链组成不溶于水的起着保护或结构作用蛋白质。

15,胶原(蛋白)(collagen):是动物结缔组织最丰富的一种蛋白质,它是由原胶原蛋白分子组成。原胶原蛋白是一种具有右手超螺旋结构的蛋白 。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的 。

16,疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的非共价的相互作用。这些非极性的分子在水相环境中具有避开水而相互聚集的倾向。

17 ,伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构向的蛋白质 。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。

18,二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用 。

19 ,范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一弱的分子之间的力。当两个原子之间的距离为它们范德华力半径之和时,范德华力最强。强的范德华力的排斥作用可防止原子相互靠近 。

20,蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照 ,热 ,有机溶济以及一些变性济的作用时,次级键受到破坏,导致天然构象的破坏 ,使蛋白质的生物活性丧失。

21,肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质 ,它的氧饱和曲线为双曲线型 。

22,复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。

23 ,波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白氧亲和力下降的现象。

24,血红蛋白(hemoglobin): 是由含有血红素辅基的4个亚基组成的结合蛋白 。血红蛋白负责将氧由肺运输到外周组织 ,它的氧饱和曲线为S型 。

25,别构效应(allosteric effect):又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性丧失的现象。

26 ,镰刀型细胞贫血病(sickle-cell anemia): 血红蛋白分子遗传缺陷造成的一种疾病 ,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β—亚基N端的第六个氨基酸残缺是缬氨酸(vol),而不是下正常的谷氨酸残基(Ghe) 。

第三章

1,酶(enzyme):生物催化剂 ,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是

通过降低活化能加快反应的速度。

2,脱脯基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或辅基后的蛋白质部分 。

3,全酶(holoenzyme):具有催化活性的酶 ,包括所有必需的亚基,辅基和其它辅助因子。

4,酶活力单位(U,active unit):酶活力单位的量度。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25oC ,其它为最适条件)下,在1min内能转化1μmol底物的酶量,或是转化底物中1μmol的有关基团的酶量 。

5 ,比活(specific activity):每分钟每毫克酶蛋白在25oC下转化的底物的微摩尔数。比活是酶纯度的测量。

6,活化能(activation energy):将1mol反应底物中所有分子由其态转化为过度态所需要的能量 。

7,活性部位(active energy):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基部分。活性部位通常位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位 ,通常都是由在三维空间上靠得很进的一些氨基酸残基组成。

8 ,酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用 。

9,共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物 。许多酶催化的基团转移反应都是通过共价方式进行的。

10 ,靠近效应(proximity effect):非酶促催化反应或酶促反应速度的增加是由于底物靠近活性部位,使得活性部位处反应剂有效浓度增大的结果,这将导致更频繁地形成过度态。

11 ,初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计 。

12 ,米氏方程(Michaelis-Mentent equation):表示一个酶促反应的起始速度(υ)与底物浓度([s])关系的速度方程:υ=υmax[s]/(Km+[s])

13,米氏常数(Michaelis constant):对于一个给定的反应,异至酶促反应的起始速度(υ0)达到最大反应速度(υmax)一半时的底物浓度。

14 ,催化常数(catalytic number)(Kcat):也称为转换数。是一个动力学常数,是在底物处于饱和状态下一个酶(或一个酶活性部位)催化一个反应有多快的测量 。催化常数等于最大反应速度除以总的酶浓度(υmax/[E]total)。或是每摩酶活性部位每秒钟转化为产物的底物的量(摩[尔])。

15,双倒数作图(double-reciprocal plot):那称为Lineweaver_Burk作图 。一个酶促反应的速度的倒数(1/V)对底物度的倒数(1/LSF)的作图。x和y轴上的截距分别代表米氏常数和最大反应速度的倒数。

16 ,竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型 。竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使Km增大而

υmax不变。

17 ,非竞争性抑制作用(noncompetitive inhibition): 抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用 。这种抑制使Km不变而υmax变小 。

18,反竞争性抑制作用(uncompetitive inhibition): 抑制剂只与酶-底物复合物结合而不与游离的酶结合的一种酶促反应抑制作用。这种抑制使Km和υmax都变小但υmax/Km不变。

19 ,丝氨酸蛋白酶(serine protease): 活性部位含有在催化期间起亲核作用的丝氨残基的蛋白质 。

20,酶原(zymogen):通过有限蛋白水解,能够由无活性变成具有催化活性的酶前体。

21 ,调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,它的活性根据代谢的需要而增加或降低。

22,别构酶(allosteric enzyme):活性受结合在活性部位以外的部位的其它分子调节的酶 。

23 ,别构调节剂(allosteric modulator):结合在别构调节酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。

24 ,齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式,按照最简单的齐变模式,由于一个底物或别构调节剂的结合 ,蛋白质的构相在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有相同的构象 ,或是T构象,或是R构象 。

25,序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式 ,一个配体的结合会诱导它结合的亚基的三级结构的变化,并使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和力 。

26 ,同功酶(isoenzyme isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。

27,别构调节酶(allosteric modulator):那称为别构效应物 。结合在别构酶的调节部位 ,调节酶催化活性的生物分子 。别构调节物可以是是激活剂,也可以是抑制剂。

第四章

1,维生素(vitamin):是一类动物本身不能合成,但对动物生长和健康又是必需的有机物 ,所以必需从食物中获得。许多辅酶都是由维生素衍生的 。

2,水溶性维生素(water-soluble vitamin):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。

3,脂溶性维生素(lipid vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物 。脂溶性维生素包括A ,D ,E,和K,这类维生素能被动物贮存。

4 ,辅酶(conzyme):某些酶在发挥催化作用时所需的一类辅助因子,其成分中往往含有维生素。辅酶与酶结合松散,可以通过透析除去 。

5 ,辅基(prosthetic group):是与酶蛋白质共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。

6,尼克酰胺腺嘌呤二核苷酸(NAD+)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+):含有尼克酰胺的辅酶,在某些氧化还原中起着氢原子和电子载体的作用 ,常常作为脱氢酶的辅 。

7,黄素单核苷酸(FMN)一种核黄素磷酸,是某些氧化还原反应的辅酶。

8 ,硫胺素焦磷酸(thiamine phosphate):是维生素B1的辅形式,参与转醛基反应。

9,黄素腺嘌呤二核苷酸(FAD):是某些氧化还原反应的辅酶 ,含有核黄素 。

10 ,磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶,脱羧酶和消旋酶的酶 。

11 ,生物素(biotin):参与脱羧反应的一种酶的辅助因子。

12,辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。

13 ,类胡萝卜素(carotenoid):由异戊二烯组成的脂溶性光合色素 。

14,转氨酶(transaminase):那称为氨基转移酶,在该酶的催化下 ,一个α-氨基酸的氨基可转移给别一个α-酮酸。

第五章

1,醛糖(aldose):一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。

2 ,酮糖(ketose):一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基 。

3,异头物(anomer):仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。

4 ,异头碳(anomer carbon):环化单糖的氧化数最高的C原子 ,异头碳具有羰基的化学反应性。

5,变旋(mutarotation):吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化 。

6 ,单糖(monosaccharide):由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。

7,糖苷(dlycoside):单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。

8 ,糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖 、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖醛键有O—糖苷键和N—糖苷键 。

9,寡糖(oligoccharide):由2~20个单糖残基通过糖苷键连接形成的聚合物。

10 ,多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线形的或带有分支的 。

11,还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖 。

12 ,淀粉(starch):一类多糖,是葡萄糖残基的同聚物。有两种形式的淀粉:一种是直链淀粉,是没有分支的 ,只是通过α-(1→4)糖苷键的葡萄糖残基的聚合物;另一类是支链淀粉 ,是含有分支的,α-(1→4)糖苷键连接的葡萄糖残基的聚合物,支链在分支处通过α-(1→6)糖苷键与主链相连。

13 ,糖原(glycogen): 是含有分支的α-(1→4)糖苷键的葡萄糖残基的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连 。

14,极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部位 ,该部分经支链淀粉酶水解作用,糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α-(1→6)糖苷键的水解。

15,肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同的肽交叉连接形成的大分子 。肽聚糖是许多细菌细胞壁的主要成分。

16 ,糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。

17,蛋白聚糖(proteoglycan):由杂多糖与一个多肽连组成的杂化的在分子,多糖是分子的主要成分 。

第六章

1 ,脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。

2,饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸 。

3 ,不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。

4 ,必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸 ,亚麻酸。

5,三脂酰苷油(triacylglycerol):那称为甘油三酯 。一种含有与甘油脂化的三个脂酰基的酯 。脂肪和油是三脂酰甘油的混合物。

6,磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂 ,脑磷脂 。

7,鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸 ,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内 ,尤其是在中枢神经系统的组织内含量丰富。

8,鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂 。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。

9 ,卵磷脂(lecithin):即磷脂酰胆碱(PC) ,是磷脂酰与胆碱形成的复合物。

10,脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物 。

11 ,脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。

12,生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。

13 ,内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白 。

14,外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。

15,流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中 ,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性 。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部 ,有的则横跨整个膜 。另外脂和膜蛋白可以进行横向扩散。

16,通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。通透系数大小与这些离子或分子在非极性溶液中的溶解度成比例 。

17,通道蛋白(channel protein):是带有中央水相通道的内在膜蛋白 ,它可以使大小适合的离子或分子从膜的任一方向穿过膜。

18 ,(膜)孔蛋白(pore protein):其含意与膜通道蛋白类似,只是该术语常用于细菌。

19,被动转运(passive transport):那称为易化扩散 。是一种转运方式 ,通过该方式溶质特异的结合于一个转运蛋白上,然后被转运过膜,但转运是沿着浓度梯度下降方向进行的 ,所以被动转达不需要能量的支持。

20,主动转运(active transport):一种转运方式,通过该方式溶质特异的结合于一个转运蛋白上然后被转运过膜 ,与被动转运运输方式相反,主动转运是逆着浓度梯度下降方向进行的,所以主动转运需要能量的驱动。在原发主动转运过程中能源可以是光 ,ATP或电子传递;而第二级主动转运是在离子浓度梯度下进行的 。

21,协同运输(contransport):两种不同溶质的跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。

22,胞吞(信用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形成(物质在囊泡内)被带入到细胞内的过程 。

第七章

1 ,核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。

2 ,核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物 。

3,cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使 ,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的 。

4,磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化 ,就形成了一个磷酸二脂键 。

5,脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。

6 ,核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸 。

7,核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA .

8 ,信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA .

9, 转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。

10,转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌 ,引起该菌的遗传特性改变的作用 。

11 ,转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。

12,碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸 ,例如A与T或U , 以及G与C配对 。

13,夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C) ,既嘌呤的总含量相等(A+G=T+C) 。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。

14 ,DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构 。碱基位于双螺旋内侧 ,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架 。碱基平面与假象的中心轴垂直 ,糖环平面则与轴平行 ,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜ ,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补 ,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力 。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。

15.大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟 ,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的 。

16.DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。

17.拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ 、通过切断DNA中的一条链减少负超螺旋,增加一个连环数 。某些拓扑异构酶Ⅱ也称为DNA促旋酶。

18.核小体(nucleosome):用

基因组 : 是一种生物体或个体细胞内基因的总和。它分为核基因组、线粒体基因组与叶绿体基因组 。基因组内包括编码序列与非编码序列

人工自动免疫:给人体接种抗原性物质 ,如疫苗、类毒素等,刺激机体免疫系统

产生特异性免疫的方法。这种方法诱导机体产生特异性免疫较慢但维持时间长。可用于

预防 、控制传染病 。

生命的定义:1 、生命是由核酸和蛋白质等物质组成的多分子体系,它具有不断自我更新、繁殖后代以及对外界产生反应的能力 ,生命的物质基础是调节代谢的酶蛋白和储藏遗传信息的核酸 。问题在于 ,已知某种病毒样生物却并无核酸。

2  、生命是蛋白体的存在方式,这个存在方式的基本因素在于和它周围的外部自然界的不断地新陈代谢,而且这种新陈代谢一停止 ,生命就随之停止,结果便是蛋白质的分解。也就是说,具有进食 、代谢、排泄、呼吸 、运动、生长、生殖和反应性等功能的系统 ,就是生命 。问题是,某些细菌却并不呼吸。

功能基因组学:功能基因组学(Functuional genomics)又往往被称为后基因组学(Postgenomics),它利用结构基因组所提供的信息和产物 ,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。

基因工程:是指在基因水平上 ,采用与工程设计十分类似的方法,根据人们的意愿,主要是在体外进行基因切割 、拼接和重新组合 ,再转入生物体内 ,产生出人们所期望的产物,或创造出具有新的遗传特征的生物类型,并能使之稳定地遗传给后代

全能干细胞:是指具有无限分化潜能 ,能分化成所有组织和器官的干细胞 。换句话说,也就是具有形成完整个体分化潜能。是指受精卵到卵裂期32细胞前的所有细胞

细胞工程:细胞工程是指在细胞水平上的遗传操作,即通过细胞融合、核质移植、染色体或基因移植以及组织和细胞培养等方法 ,快速繁殖和培养出人们所需要的新物种的技术。

人类基因组计划:人类基因组计划是1986年由美国学者提出,世界各国展开合作研究的项目 。其主要研究内容包括:人类基因组遗传学作图;染色体物理图谱制作;人类基因组全序列测定

维生素: 是维持机体正常功能所必需的一类微量低分子有机化合物。他们在体内不能合成或合成量很少,必须由食物供给。

分子病:由于基因突变导致蛋白质一级结构的改变 ,进而引起生物体某些结构和功能的异常,这种疾病称为分子病 。

免疫:是指机体免疫系统识别“自己”与“非己 ”抗原物质,对“自己”物质耐受

而排除“非己”抗原物质的生理过程。

二 、 简答题

1. 从降低遗传病发病率的角度 ,应采取哪些优生措施。

答:A、开展婚前检查 B、禁止近亲结婚 C 、提倡适龄生育:20岁以下年轻母亲所生子女中,先天畸形发生率比25~34岁者要高50%,40岁以上母亲所生子女中 ,先天愚型的发病率要比25~34岁者高10倍 。 D、开展遗传咨询 E、开展产前诊断

F 、妊娠早期避免接触致畸剂:如链霉素可致胎儿听神经受损 ,氯霉素可致灰色综合症,电离辐射可致胎儿生长缓慢

2. 试说明通过细胞工程克隆产生的绵羊“多莉 ”和通过正常胚胎发育产生的绵羊本质上有何区别?

答:无性生殖是不经过生殖细胞的结合,由母体直接产生出新个体的生殖方式 。无性生殖的方式有:分裂生殖 、出芽生殖、孢子生殖、营养生殖。有性生殖是由合子发育成为新个体的生殖方式。而合子是由亲本产生有性生殖细胞 ,经过两性生殖细胞的结合,成为合子 。而克隆绵羊多利和通过正常胚胎发育的绵羊的本质区别正如上述所说。

3人类对转基因食品应用方面的担忧包括哪些方面?

答:人们对转基因食品的安全性担忧主要有三类:

一是转基因食品里新出现的成分对消费者有没有构成威胁,新物质有没有危险;二是转基因技术对人以外的生物有无危害 ,如抗虫棉作物对人无危害,但棉铃虫减少以后,以之为食的其它生物会受到影响 ,从而危及生物多样性; 三是一些转基因植物的竞争能力非常强,把原有的其它物种排挤掉,也会使生物多样性受到威胁。

4 、叙述酶与人类生活的关系?

答:在人和动植物的生理活动中 ,酶起着重要的作用,如含有淀粉的食物常常为人们的唾液和胰液中含有的淀粉酶所水解 。

人们现在已经知道的酶有1000种以上,工业上大量使用的酶 ,多数是通过微生物发酵制得的 ,并且已经有许多种酶制成了晶体,酶已得到广泛的应用,如淀粉酶应用于食品、发酵、纺织 、制药等工艺;蛋白质用于医药、制革等工艺;脂肪酶用来使脂肪水解、羊毛脱脂等。酶也用于制造多种有机溶剂和试剂 ,如柠檬酸 、丙酮、丁醇等。

5、什么是干细胞?种类有哪些?应用价值有哪些?

答:干细胞是具有自我更新 、高度增殖和多向分化潜能的细胞群体,即这些细胞可以通过细胞分裂维持自身细胞群的大小,同时又可以进一步分化成为各种不同的组织细胞 ,从而构成机体各种复杂的组织器官 。目前,通常将干细胞分为全能干细胞(如胚胎干细胞可以分化形成所有的成体组织细胞,甚至发育成为完整的个体)、多能干细胞(具有多向分化的潜能 ,可以分化形成除自身组织细胞外的其他组织细胞,如造血干细胞、神经干细胞 、间充质干细胞 、皮肤干细胞等)和专能干细胞(维持某一特定组织细胞的自我更新,如肠上皮干细胞)。胚胎干细胞的分化和增殖构成动物发育的基础 ,即由单个受精卵发育成为具有各种组织器官的个体;成体干细胞的进一步分化则是成年动物体内组织和器官修复再生的基础。

6、简述衰老的主要机制?

答:1、生命大分子的交联聚合和指褐素的累积 。2 、器官组织细胞的破坏与减少3、免疫功能的降低

7、癌症发生的主要原因有哪些?

答: (1)外界致癌因素

化学致癌:如芳香胺类,亚硝胺类 、砷、铬、镉 、镍等 物理致癌:如电离辐射、日光及紫外线照射等。生物致癌:如病毒、寄生虫及慢性炎症刺激。

(2)内在致癌因素:遗传因素 、种族因素、性别与年龄、激素因素 、免疫因素 。

8 、当今人类社会面临的最重大的问题和挑战有哪些?请举出至少4个 。①人口问题 ②资源问题 ③环境问题 ④发展问题

三、论述题

1、简述“多利 ”羊的克隆过程。谈谈克隆技术发展的意义及其影响。

答:从一只成年绵羊身上提取体细胞,然后把这个体细胞的细胞核注入另一只绵羊的卵细胞之中 ,而这个卵细胞已经抽去了细胞核 ,最终新合成的卵细胞在第三只绵羊的子宫内发育形成了多利羊 。

2 、试述人类免疫系统及其功能。谈谈人工免疫的方法及其应用。

答:人类的免疫功能主要有三道防线:一、皮肤和黏膜二、体内的杀菌物质和吞噬细胞三免疫器官和免疫细胞

功能:一 、抵抗抗原的侵入,防止疾病的发生维护人体的健康二、及时清除人体内的衰老的、死亡的 、损伤的细胞三、随时识别和清除人体内产生的异常细胞(如肿瘤细胞)

人工免役的方法:在体内注射疫苗如:平常打的预防针等都属于人工免疫 。

3. 试以近代人类利用生物技术在医学和农业中所取得的成就为例,说明技术的进步和应用会给我们带来怎样的影响。

答:在新经济时代 ,高科技的信息将成为一种重要的生产力,推动着人类社会的发展;高科技的生物工程作为一种新生力量,直接导致农业、医药卫生 、食品工业和化学工业革命 ,推动着新经济的进步;高科技的新材料作为新经济的里程碑,将重构新经济的材料基础;高科技的新能源将使人们不再为资源的短缺而忧愁,作为新经济的火车头 ,它将带来人类社会的可持续发展;航天技术使人们从地球的怀抱中飞向太空,新经济也随着航天技术的发展而腾飞;海洋技术将开拓人类新经济社会生活新空间;软科学技术使人们的管理效率更高,决策更正确 ,分析更透彻

4、试述转基因技术应用价值和可能造成的危害。答:1)具有明显的经济效益2)解决发展中国家人民的饥饿问题3)可能大大缩短作物生长期危害:农作物广泛减产;严重影响整个食物供给;未进行较长时间的安全性试验;产生毒素;产生不能预见的和未知的变态反应原;减少食品的营养价值或降解食品中重要的成份;产生抗菌素耐药性细菌;副作用能杀害人体

5、引起疾病的内 、外因素有哪些?答:内因,包括免疫性因素 、神经内分泌因素、遗传性因素、先无性因素 、心理因素和年龄性别因素等

所谓外因,是指感受于外界(自然界)的某些致病因素 ,相当于现在所知道的寄生虫、细菌、病毒 、衣原体、支原体等 ,这些物质存在于自然界,由外入侵人体后产生疾病 。

6论述生物进化的主要证据有哪些?

答:比较解剖学证据胚胎学证据 细胞遗传学证据 生物地理学证据 生化与分子生物学证据

7、对基因工程的诞生起决定作用的现代分子生物学领域理论上的三大发现和技术上的三大发明是什么?谈一谈基因工程的应用。

答:三大发现:核酸是遗传物质的基础 DNA的双螺旋结构中心法则

三大技术:DNA的特异切割 DNA的分子克隆 DNA的快速测序;

基因工程的应用:1 、基因疗法;2、基因工程药物研究;3、加快农作物新品种的培育 4 、分子进化工程的研究;

8、基因工程中通常获取目的基因的方法有哪些?

答;构建基因文库、通过PCR方式从含有该基因的生物的DNA中,直接获得 ,也可以通过反转录,用PCR方式从mRNA中获得

9 、试述人类对基因的认识过程。谈谈人类基因组计划及其意义 。

答;1)。人类对基因的认识过程

孟德尔第一次明确提出了遗传因子的概念,并且提出了遗传因子控制遗传性状的若干规律 ,还提出了杂交 、自交、回(测)交等以桃科学有效的遗传研究方法,来研究遗传因子的规律。20世纪初,摩根和他的学生用果蝇为材料的杂交实验确定了基因在染色体上的分布规律 ,发现了基因间存在着连锁和交换现象也就是遗传学第三定律 。Avery的实验证实,进入细菌改变特性的遗传物质是DNA 。Watson和Crick提出DNA的双螺旋模型说明DNA分子能够充当遗传的物质基础,在细胞分裂时 ,DNA的合成是:“半保留复制”的模式。后来进一步发现了基因的语言即遗传密码设想ATGC。以孟德尔学说为开端的遗传理论发展到以DNA分子结构为基础的分子遗传学,使我们对遗传规律有了确切了解,但是目前 ,基因理论仍存在许多复杂情况 。

(2)。人类基因组计划

1.启动:1986年 ,提出人类基因组计划——测出人类全套基因组的DNA碱基序列

1900年,美国国会批准“人类基因计划”拟在15年内投资30亿美元

以美国为主,包括英、法 、日、德和中国多国科学家参加国际合作计划。

共有6个国家 ,16个实验中心参与

2 。主要目标

确立人类染色体的DNA序列

“读出 ”、“读懂”人类基因组的全部“核苷酸语言”

确定基因的位置 、结构、功能

揭示人类自身的奥秘:寻找人类祖先、国家或民族的起源 、走出人种理论误区、追溯疾病原因、了解民族疾病的差异 、为临床诊断和治疗奠定基础

解释各种生命现象

从分子水平阐明各种疾病的发病机理

3.意义:人类基因组计划是人类科学史上的伟大科学工程,人类基因组序列是全人类的共同财富,应该用来为全人类造福。人类基因组计划产生了重大影响 ,在HGP推动下,世界大公司投入生物技术意向剧增,也推动了新学科的兴起。

关于“求生物化学名词解释 ”这个话题的介绍 ,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[白菱]投稿,不代表TJhao立场,如若转载,请注明出处:https://www.51tjs.cn/sygl/202508-72175.html

(4)

文章推荐

  • 1分钟科普“AAPoker辅助工具”内幕开挂教程

    熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,点击添加客服微信包括如何和牌、胡牌、、碰、等。只有了解了规则,才能更好地制定策略。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情

    2025年03月17日
    8
  • 3分钟学会“雀神小程序辅助购买”(详细透视教程)-哔哩哔哩

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年03月18日
    20
  • 7分钟揭秘!AAPoker辅助工具”(详细开挂教程)

    亲,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件.点击添加客服微信微信打麻将是一款非常流行的棋牌游戏,深

    2025年03月19日
    7
  • 4分钟科普“娱网皮球游戏能调胜率吗”(怎么设置胜率)

    熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,点击添加客服微信包括如何和牌、胡牌、、碰、等。只有了解了规则,才能更好地制定策略。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情

    2025年08月20日
    3
  • 2分钟科普“乐达大连麻将有挂么(怎么设置系统给你好牌)

    您好,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,点击添加客服微信一、2024微乐麻将插件安装有哪些方式1、脚本开

    2025年08月21日
    3
  • 安装程序教程“微乐湖南麻将助攻神器”(其实确实有挂)

    亲,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件.点击添加客服微信微信打麻将是一款非常流行的棋牌游戏,深

    2025年08月22日
    3
  • 3分钟科普“友间十三张有挂吗”其实确实有挂

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年03月18日
    12
  • 分享实测辅助“福州十八扑辅助”(详细透视教程)-哔哩哔哩

    您好:这款游戏可以开挂,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的点击添加客服微信1.这款游戏可以开挂,确实是有挂的,通过添加客服微2.在"设置DD功能DD微信手

    2025年08月27日
    0
  • 3分钟学会“吉祥三公外挂,推荐2个购买渠道

    您好,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,点击添加客服微信一、2024微乐麻将插件安装有哪些方式1、脚本开

    2025年05月01日
    6
  • 厉害了!微乐福建麻将有挂吗(如何让系统发好牌)

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年03月19日
    4

发表回复

本站作者后才能评论

评论列表(4条)

  • 白菱
    白菱 2025年08月26日

    我是TJhao的签约作者“白菱”!

  • 白菱
    白菱 2025年08月26日

    希望本篇文章《8分钟科普“同城游510k辅助器”(其实确实有挂)》能对你有所帮助!

  • 白菱
    白菱 2025年08月26日

    本站[TJhao]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 白菱
    白菱 2025年08月26日

    本文概览:亲,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款...

    联系我们

    邮件:TJhao@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们