8分钟科普“小吆湖南麻将软件”(详细透视教程)-哔哩哔哩

熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,...

熟悉规则:首先,你需要熟悉微乐麻将的游戏规则 ,

点击添加客服微信

包括如何和牌、胡牌 、、碰、等。只有了解了规则,才能更好地制定策略 。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家 ,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情况会不断发生变化 。你需要根据手中的牌和牌桌上的情况来灵活调整策略。比如 ,当手中的牌型不好时 ,可以考虑改变打法,选择更容易和牌的方式。 记牌和算牌:记牌和算牌是麻将高手的必备技能 。通过记住已经打出的牌和剩余的牌,你可以更好地接下来的牌局走向 ,从而做出更明智的决策 。 保持冷静:在麻将比赛中,保持冷静和理智非常重要。不要因为一时的胜负而影响情绪,导致做出错误的决策。要时刻保持清醒的头脑 ,分析牌局,做出佳的选择 。  
通过添加客服微信
请注意,虽然微乐麻将自建房胜负规律策略可以提高你的赢牌机会 ,但麻将仍然是一种博弈游戏,存在一定的运气成分。因此,即使你采用了这些策略 ,也不能保证每次都能胜牌。重要的是享受游戏过程,保持积极的心态 。

1.99%防封号效果,但本店保证不被封号2.此款软件使用过程中,放在后台,既有效果3.软件使用中,软件岀现退岀后台,重新点击启动运行4.遇到以下情况:游/戏漏闹洞修补 、服务器维护故障、等原因,导致后期软件无法使用的,请立即联系客服修复5.本店软件售出前,已全部检测能正常安装和使用.



是由于不同DNA链的断裂和连接而产生DNA片段的交换和重新组合,形成新DNA分子的过程。

在人类的体细胞中发现的23对染色体

发生在生物体内基因的交换或重新组合。包括同源重组、位点特异性重组 、转座作用和异常重组四大类 。是生物遗传变异的一种机制。

指整段DNA在细胞内或细胞间 ,甚至在不同物种之间进行交换 ,并能在新的位置上复制 、转录和翻译。在进化、繁殖、病毒感染 、基因表达以致癌基因激活等过程中,基因重组都起重要作用 。基因重组也归类为自然突变现象。基因工程是在试管内按人为的设计实施基因重组的技术,也称为重组DNA。

有目的的将一个个体细胞内的遗传基因转移到另一个不同性状的个体细胞内DNA分子 ,使之发生遗传变异的过程 。来自供体的目的基因被转入受体细菌后,可进行基因产物的表达,从而获得用一般方法难以获得的产品 ,如胰岛素、干扰素、乙型肝炎疫苗等是通过以相应基因与大肠杆菌或酵母菌的基因重组而大量生产的 。即基因重组

由于基因的独立分配或连锁基因之间的交换而在后代中出现亲代所没有的基因组合。

原核生物的基因重组有转化 、转导和接合等方式。受体细胞直接吸收来自供体细胞的DNA片段,并使它整合到自己的基因组中,从而获得供体细胞部分遗传性状的现象 ,称为转化 。通过噬菌体媒介,将供体细胞DNA片段带进受体细胞中,使后者获得前者的部分遗传性状的现象 ,称为转导。自然界中转导现象较普遍,可能是低等生物进化过程中产生新的基因组合的一种基本方式。供体菌和受体菌的完整细胞经直接接触而传递大段DNA遗传信息的现象,称为接合 。细菌和放线菌均有接合现象。高等动植物中的基因重组通常在有性生殖过程中进行 ,即在性细胞成熟时发生减数分裂时同源染色体的部分遗传物

质可实现交换 ,导致基因重组。基因重组是杂交育种的生物学基础,对生物圈的繁荣昌盛起重要作用,也是基因工程中的关键性内容 。

从广义上讲 ,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂—复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子 ,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂c复合 ,因此,不包括在狭义的基因重组的范围之内 。

根据重组的机制和对蛋白质因子的要求不同,可以将狭义的基因重组分为三种类型 ,即同源重组、位点特异性重组和异常重组。同源重组的发生依赖于大范围的DNA同源序列的联会,在重组过程中,两条染色体或DNA分子相互交换对等的部分。真核生物的非姊妹染色单体的交换、细菌以及某些低等真核生物的转化 、细菌的转导接合、噬菌体的重组等都属于这种类型 。大肠杆菌的同源重组需要RecA蛋白 ,类似的蛋白质也存在于其他细菌中 。位点特异性重组发生在两个DNA分子的特异位点上。它的发生依赖于小范围的DNA同源序列的联会 ,重组也只限于这个小范围。两个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中 。这种重组不需要RecA蛋白的参与。异常重组发生在顺序不相同的DNA分子间,在形成重组分子时往往依赖于DNA的复制而完成重组过程。例如 ,在转座过程中,转座因子从染色体的一个区段转移到另一个区段,或从一条染色体转移到另一条染色体 。这种类型的重组也不需要RecA蛋白的参与。

基因重组只发生在减数分裂过程和基因工程中(三倍体、病毒 、细菌等不能基因重组)[2]

类型

基因重组是指一个基因的DNA序列是由两个或两个以上的亲本DNA组合起来的。基因重组是遗传的基本现象 ,病毒、原核生物和真核生物都存在基因重组现象 。减数分裂可能发生基因重组。基因重组的特点是双DNA链间进行物质交换。真核生物,重组发生在减数分裂期同源染色体的非姊妹染色单体间,细菌可发生在转化或转导过程中 ,通常称这类重组为同源重组(homologous recombination),即只要两条DNA序列相同或接近,重组可在此序列的任何一点发生 。然而在原核生物中 ,有时基因重组依赖于小范围的同源序列的联会,重组只限于该小范围内,只涉及特定位点的同源区 ,把这类重组称作位点专一性重组(site-specific recombination) ,此外还有一种重组方式,完全不依赖于序列间的同源性,使一段DNA序列插入另一段中 ,在形成重组分子时依赖于DNA复制完成重组,称此类重组为异常重组(illegitimate recombination),也称复制性重组(replicative recombination)。

标记辅助选择的简介

在介绍GS模型之前 ,我们有必要先来了解一下混合线性模型(Mixed Linear Model,MLM)。混合线性模型是一种方差分量模型,既然是线性模型 ,意味着各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应 ,等于几个输入量单独作用的响应之和(公式1) 。

?= Xβ + e = +? 1 ? 1 +? 2 ? 2 +?+ +? (公式1)

式中?表示响应变量的测量值向量, X 为固定效应自变量的设计矩阵, β 是与 X 对应的固定效应参数向量; 、? 1  、? 、 是未知参数; 、? 1 、? 、 是影响各因素的观察值;?是残差 。同时需要满足条件: E(y)=Xβ ,Var(y)=σ 2 I , y 服从正态分布。

既然是混合效应模型,则既含有固定效应,又含有随机效应。所谓固定效应是指所有可能出现的等级或水平是已知且能观察的 ,如性别、年龄、品种等 。所谓随机效应是指随机从总体中抽取样本时可能出现的水平,是不确定的,如个体加性效应 、母体效应等(公式2)。

y = Xβ + Zμ +? (公式2)

式中 y 为观测值向量; β 为固定效应向量; μ 为随机效应向量 ,服从均值向量为0、方差协方差矩阵为G的正态分布 μ ~ N(0,G) ; X 为固定效应的关联矩阵; Z 为随机效应的关联矩阵;?为随机误差向量,其元素不必为独立同分布,即 ? ~ N(0,R) 。同时假定 Cov(G,R)=0  ,即G与R间无相关关系, y 的方差协方差矩阵变为 Var(y)=ZGZ+R  。若 Zμ 不存在,则为固定效应模型。若 Xβ 不存在 ,则为随机效应模型。

在传统的线性模型中,除线性关系外,响应变量还有正态性、独立性和方差齐性的假定 。混合线性模型既保留了传统线性模型中的正态性假定条件 ,又对独立性和方差齐性不作要求 ,从而扩大了适用范围,目前已广泛应用于基因组选择。

很早以前C.R.Henderson就在理论上提出了最佳线性无偏预测(Best Linear Unbiased Prediction,BLUP)的统计方法 ,但由于计算技术滞后限制了应用。直到上世纪70年代中期,计算机技术的发展为BLUP在育种中的应用提供了可能 。BLUP结合了最小二乘法的优点,在协方差矩阵已知的情况下 ,BLUP是分析动植物育种目标性状理想的方法,其名称含义如下:

在混合线性模型中,BLUP是对随机效应中随机因子的预测 ,BLUE(Best Linear Unbiased Estimation)则是对固定效应中的固定因子的估算。在同一个方程组中既能对固定效应进行估计,又能对随机遗传效应进行预测。

BLUP方法最初应用在动物育种上 。传统的动物模型是基于系谱信息构建的亲缘关系矩阵(又称A矩阵)来求解混合模型方程组(Mixed Model Equations,MME)的 ,因此称之ABLUP 。Henderson提出的MME如下所示:

式中X为固定效应矩阵,Z为随机效应矩阵,Y为观测值矩阵。其中R和G:

其中A为亲缘关系矩阵 ,因此可转化公式为:

进一步可转化为:

通过求解方程组 ,计算残差和加性方差的方差组分,即可得到固定因子效应值 (BLUE)和随机因子效应值 (BLUP)。

作为传统BLUP方法,ABLUP完全基于系谱信息来构建亲缘关系矩阵 ,进而求得育种值,此方法在早期动物育种中应用较多,现在已基本不单独使用 。

VanRaden于2008年提出了基于G矩阵的GBLUP(Genomic Best Linear unbiased prediction)方法 ,G矩阵由所有SNP标记构建,公式如下:

GBLUP通过构建基因组关系矩阵G代替基于系谱信息构建的亲缘关系矩阵A,进而直接估算个体育种值。

GBLUP求解过程同传统BLUP方法 ,仅仅在G矩阵构建不同。除了VanRaden的基因组关系构建G矩阵外,还有其他G矩阵构建方法,但应用最多的还是VanRaden提出的方法 。如Yang等提出的按权重计算G矩阵:

Goddard等提出的基于系谱A矩阵计算G矩阵:

目前GBLUP已经广泛应用于动植物育种中 ,并且因为它的高效 、稳健等优点,现在仍饱受青睐。GBLUP假设所有标记对G矩阵具有相同的效应,而在实际基因组范围中只有少量标记具有主效应 ,大部分标记效应较小 ,因此GBLUP仍有很大的改进空间。

在动物育种中,由于各种各样的原因导致大量具有系谱记录和表型信息的个体没有基因型,单步法GBLUP(single-step GBLUP ,ssGBLUP)就是解决育种群体中无基因型个体和有基因型个体的基因组育种值估计问题 。

ssGBLUP将传统BLUP和GBLUP结合起来,即把基于系谱信息的亲缘关系矩阵A和基因组关系矩阵G进行整合,建立新的关系矩阵H ,达到同时估计有基因型和无基因型个体的育种值。

H矩阵构建方法:

式中w为加权因子,即多基因遗传效应所占比例。

构建H矩阵后,其求解MME过程也是与传统BLUP一样:

ssBLUP由于基因分型个体同时含有系谱记录和表型数据 ,相对于GBLUP往往具有更高的准确性 。该方法已成为当前动物育种中最常用的动物模型之一。在植物育种中,往往缺乏较全面的系谱信息,群体中个体的基因型也容易被测定 ,因此没有推广开来。

如果把GBLUP中构建协变量的个体亲缘关系矩阵换成SNP标记构成的关系矩阵,构建模型,然后对个体进行预测 ,这就是RRBLUP(Ridge Regression Best Linear Unbiased Prediction)的思路 。

为什么不直接用最小二乘法?最小二乘法将标记效应假定为 固定效应 ,分段对所有SNP进行回归,然后将每段中显著的SNP效应相加得到个体基因组育种值 。该方法只考虑了少数显著SNP的效应,很容易导致多重共线性和过拟合。

RRBLUP是一种改良的最小二乘法 ,它能估计出所有SNP的效应值。该方法将标记效应假定为 随机效应 且服从正态分布,利用线性混合模型估算每个标记的效应值,然后将每个标记效应相加即得到个体估计育种值 。

一般而言 ,基因型数据中标记数目远大于样本数(p>>n)。RRBLUP因为是以标记为单位进行计算的,其运行时间相比GBLUP更长,准确性相当。

GBLUP是直接法的代表 ,它把个体作为随机效应,参考群体和预测群体遗传信息构建的亲缘关系矩阵作为方差协方差矩阵,通过迭代法估计方差组分 ,进而求解混合模型获取待预测个体的估计育种值 。RRBLUP是间接法的代表,它首先计算每个标记效应值,再对效应值进行累加 ,进而求得育种值。下图比较了两类方法的异同:

直接法估计 ,间接法估计标记效应之和 M 。当K=M’M且标记效应g服从独立正态分布(如上图所示)时,两种方法估计的育种值是一样的,即 = M  。

基于BLUP理论的基因组选择方法假定所有标记都具有相同的遗传方差 ,而实际上在全基因组范围内只有少数SNP有效应,且与影响性状的QTL连锁,大多数SNP是无效应的。当我们将标记效应的方差假定为某种先验分布时 ,模型变成了贝叶斯方法。常见的贝叶斯方法也是Meuwissen提出来的(就是提出GS的那个人),主要有BayesA、BayesB、BayesC 、Bayesian Lasso等 。

BayesA假设每个SNP都有效应且服从正态分布,效应方差服从尺度逆卡方分布。BayesA方法事先假定了两个与遗传相关的参数 ,自由度v和尺度参数S。它将Gibbs抽样引入到马尔科夫链蒙特卡洛理论(MCMC)中来计算标记效应 。

BayesB假设少数SNP有效应,且效应方差服从服从逆卡方分布,大多数SNP无效应(符合全基因组实际情况) 。BayesB方法的标记效应方差的先验分布使用混合分布 ,难以构建标记效应和方差各自的完全条件后验分布,因此BayesB使用Gibbs和MH(Metropolis-Hastings)抽样对标记效应和方差进行联合抽样。

BayesB方法在运算过程中引入一个参数π。假定标记效应方差为0的概率为π,服从逆卡方分布的概率为1-π ,当π为1时 ,所有SNP都有效应,即和BayesA等价 。当遗传变异受少数具有较大影响的QTL控制时,BayesB方法准确性较高。

BayesB中的参数π是人为设定的 ,会对结果带来主观影响。BayesC、BayesCπ、BayesDπ等方法对BayesB进行了优化 。BayesC方法将π作为未知参数,假定其服从U(0,1)的均匀分布,并假设有效应的SNP的效应方差不同。BayesCπ方法在BayesC的基础上假设SNP效应方差相同 ,并用Gibbs抽样进行求解。BayesDπ方法对未知参数π和尺度参数S进行计算,假设S的先验分布和后验分布均服从(1,1)分布,可直接从后验分布中进行抽样 。

下图较为形象地说明了不同方法的标记效应方差分布:

Bayesian Lasso(Least absolute shrinkage and selection operator)假设标记效应方差服从指数分布的正态分布 ,即拉普拉斯(Laplace)分布。其与BayesA的区别在于标记效应服从的分布不同,BayesA假设标记效应服从正态分布。Laplace分布可允许极大值或极小值以更大概率出现 。

从以上各类贝叶斯方法可看出,贝叶斯方法的重点和难点在于如何对超参的先验分布进行合理的假设。

Bayes模型相比于BLUP方法往往具有更多的待估参数 ,在提高预测准确度的同时带来了更大的计算量。MCMC需要数万次的迭代,每一次迭代需要重估所有标记效应值,该过程连续且不可并行 ,需消耗大量的计算时间 ,限制了其在时效性需求较强的动植物育种实践中的应用 。

为提高运算速度和准确度,很多学者对Bayes方法中的先验假设和参数进行优化,提出了fastBayesA 、BayesSSVS 、fBayesB、emBayesR、EBL 、BayesRS、BayesTA等 。但目前最常用的Bayes类方法还是上述的几种。

各种模型的预测准确度较大程度的取决于其模型假设是否适合所预测表型的遗传构建。一般而言 ,调参后贝叶斯方法的准确性比BLUP类方法要略高,但运算速度和鲁棒性不如BLUP 。因此,我们应根据自身需求权衡利弊进行合理选择。

除了基于BLUP和Bayes理论的参数求解方法外 ,基因组选择还有半参数(如RKHS,见下篇)和非参数,如机器学习(Machine Learning, ML)等方法。机器学习是人工智能的一个分支 ,其重点是通过将高度灵活的算法应用于观察到的个体( 标记的数据 )的已知属性( 特征 )和结果来预测未观察到的个体( 未标记的数据 )的结果 。结果可以是连续的,分类的或二元的。在动植物育种中, 标记的数据 对应于具有基因型和表型的训练群体 ,而 未标记的数据 对应于测试群体,用于预测的 特征 是SNP基因型。

相比于传统统计方法,机器学习方法具有诸多优点:

支持向量机(Support Vector Machine ,SVM)是典型的非参数方法 ,属于监督学习方法 。它既可解决分类问题,又可用于回归分析。SVM基于结构风险最小化原则,兼顾了模型拟合和训练样本的复杂性 ,尤其是当我们对自己的群体数据不够了解时,SVM或许是基因组预测的备选方法。

SVM的基本思想是求解能够正确划分训练数据集并且几何间隔最大的分离超平面 。在支持向量回归(Support Vector Regression,SVR)中 ,通常使用近似误差来代替像SVM中那样的最佳分离超平面和支持向量之间的余量。假设ε为不敏感区域的线性损失函数,当测量值和预测值小于ε时,误差等于零。SVR的目标就是同时最小化经验风险和权重的平方范数 。也就是说 ,通过最小化经验风险来估计超平面 。

下图1比较了SVM中回归(图A)和分类(图B)的差别。式中ξ和ξ*为松弛变量,C为用户定义的常数,W为权重向量范数 ,?表示特征空间映射。

当SVM用于预测分析时,高维度的大型数据集会给计算带来极大的复杂性,核函数的应用能大大简化内积 ,从而解决维数灾难 。因此 ,核函数的选择(需要考虑训练样本的分布特点)是SVM预测的关键。目前最常用的核函数有:线性核函数、高斯核函数(RBF)和多项式核函数等。其中, RBF具有广泛的适应性,能够应用于训练样本(具有适当宽度参数)的任何分布 。尽管有时会导致过拟合问题 ,但它仍是使用最广泛的核函数。

集成学习(Ensemble Learning)也是机器学习中最常见的算法之一。它通过一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器更好的效果 。通俗地说 ,就是一堆弱学习器组合成一个强学习器。在GS领域,随机森林(Random Forest,RF)和梯度提升机(Gradient Boosting Machine ,GBM)是应用较多的两种集成学习算法。

RF是一种基于决策树的集成方法,也就是包含了多个决策树的分类器 。在基因组预测中,RF同SVM一样 ,既可用做分类模型,也可用做回归模型。用于分类时,注意需要事先将群体中个体按表型值的高低进行划分。RF算法可分为以下几个步骤:

最后 ,RF会结合分类树或回归树的输出进行预测 。在分类中 ,通过计算投票数(通常使用每个决策树一票)并分配投票数最高的类别来预测未观察到的类别 。在回归中,通过对ntree输出进行求平均。

有两个影响RF模型结果的重要因素:一是每个节点随机取样的协变量数量(mtry,即SNP数目)。构建回归树时 ,mtry默认为p/3(p是构建树的预测数量),构建分类树时,mtry为[上传失败...(image-10f518-1612450396027)] ;二是决策树的数量 。很多研究表明树并非越多越好 ,而且构树也是非常耗时的。在GS应用于植物育种中,通常将RF的ntree设置在500-1000之间。

当GBM基于决策树时,就是梯度提升决策树(Gradient Boosting Decision Tree ,GBDT),和RF一样,也是包含了多个决策树 。但两者又有很多不同 ,最大的区别在于RF是基于bagging算法,也就是说它将多个结果进行投票或简单计算均值选出最终结果。而GBDT是基于boosting算法,它通过迭代的每一步构建弱学习器来弥补原模型的不足。GBM通过设置不同的损失函数来处理各类学习任务 。

虽然已经有不少研究尝试了将多种经典机器学习算法应用于基因组预测中 ,但提升的准确性仍然有限 ,而且比较耗时。在无数的机器学习算法中,没有一种方法能够普遍地提高预测性,不同的应用程序及其最优方法和参数是不同的。相比于经典的机器学习算法 ,深度学习(Deep Learning,DL)或许是未来应用于基因组预测更好的选择 。

传统的机器学习算法如SVM,一般是浅层模型。而深度学习除了输入和输出层 ,还含有多个隐藏层,模型结构的深度说明了它名字的含义。DL的实质是通过构建具有很多隐藏层的机器学习模型和海量的训练数据,来学习更有用的特征 ,从而最终提升分类或预测的准确性 。DL算法的建模过程可简单分为以下三步:

在GS领域,研究较多的DL算法,包括多层感知器(Multi-layer Perceptron ,MPL) 、卷积神经网络(Convolutional neural network,CNN)和循环神经网络(Recurrent Neural Networks,RNN)等 。

MLP是一种前馈人工神经网络(Artificial Neural Network ,ANN)模型 ,它将输入的多个数据集映射到单一的输出数据集上。MLP包括至少一个隐藏层,如下图2中所示,除了一个输入层和一个输出层以外 ,还包括了4个隐藏层,每一层都与前一层的节点相连,并赋予不同权重(w) ,最后通过激活函数转化,将输入映射到输出端。

CNN是一类包含卷积计算且具有深度结构的前馈神经网络,通常具有表征学习能力 ,能够按其阶层结构对输入信息进行平移不变分类 。CNN的隐藏层中包含卷积层(Convolutional layer)、池化层(Pooling layer)和全连接层(Fully-connected layer)三类,每一类都有不同的功能,比如卷积层的功能主要是对输入数据进行特征提取 ,池化层对卷积层特征提取后输出的特征图进行特征选择和信息过滤,而全连接层类似于ANN中的隐藏层,一般位于CNN隐藏层的最末端 ,并且只向全连接层传递信号。CNN结构如下图3所示。

需要注意的是 ,深度学习不是万能的 。使用DL的前提是必须具有足够大和质量好的训练数据集,而且根据GS在动植物方面的研究表明,一些DL算法和传统的基因组预测方法相比 ,并没有明显的优势。不过有一致的证据表明, DL算法能更有效地捕获非线性模式。因此,DL能够根据不同来源的数据通过集成GS传统模型来进行辅助育种 。总之 ,面对将来海量的育种数据,DL的应用将显得越来越重要。

以上是GS中常见的预测模型,不同分类方式可能会有所区别。这里再简单介绍一下上述未提及到但比较重要的方法 ,其中一些是上述三类方法的拓展 。

再生核希尔伯特空间(Reproducing Kernel Hilbert Space,RKHS)是一种典型的半参数方法。它使用高斯核函数来拟合以下模型:

RKHS模型可采用贝叶斯框架的Gibbs抽样器,或者混合线性模型来求解。

GBLUP仍然是动植物育种中广泛应用的方法 ,它假定所有标记都具有相同的效应 。但在实际情况中,任何与目标性状无关的标记用来估计亲缘关系矩阵都会稀释QTL的作用 。很多研究对其进行改进,主要有几种思路:

沿用以上的思路 ,sBLUP(Settlement of Kinship Under Progressively Exclusive Relationship BLUP, SUPER BLUP)方法将TABLUP进一步细化为少数基因控制的性状 ,这样基因型关系矩阵的构建仅仅使用了与性状关联的标记。

如果要在亲缘关系矩阵中考虑群体结构带来的影响,可根据个体遗传关系的相似性将其分组,然后将压缩后的组别当做协变量 ,替换掉原来的个体,而组内个体的亲缘关系都是一样的。因此在构建基因组关系矩阵时,可用组别的遗传效应值来代替个体的值 ,用个体对应的组来进行预测,这就是cBLUP(Compressed BLUP) 。

以上思路都提到了将已验证和新发现的位点整合到模型中,这些位点从何而来?最常见来源自然是全基因组关联分析(Genome Wide Association Study, GWAS)。GS和GWAS有着天然的联系 ,将GWAS的显著关联位点考虑进GS中,直接的好处是能维持多世代的预测能力,间接的好处是能增加已验证突变的数量。

下图比较了GWAS辅助基因组预测的各类方法比较 。a表示分子标记辅助选择方法(MAS) ,只利用了少数几个主效位点;b表示经典GS方法,利用了全部标记,且标记效应相同;c对标记按权重分配;d将显著关联标记视为固定效应;e将显著关联标记视为另一个随机效应(有其自身的kernel derived);f将染色体划分为片段 ,每个片段构建的G矩阵分配为不同的随机效应。

GWAS辅助基因组预测的结果会比较复杂 ,单纯地考虑将关联信号纳入模型不一定都能提高准确性,具体表现应该和性状的遗传构建有关。

GS对遗传效应的估计有两种不同的策略 。一是关注估计育种值,将加性效应从父母传递给子代。而非加性效应(如显性和上位性效应)与特定基因型相关 ,不能直接遗传。当估计方差组分时,非加性效应通常和随机的环境效应一起被当成噪音处理 。另一种策略同时关注加性和非加性效应,通常用于杂种优势的探索。杂交优势一般认为是显性和上位性效应的结果 ,因此,如果非加性效应很明显,而你恰好将它们忽略了 ,遗传估计将会产生偏差。

杂种优势利用是植物育种,尤其是水稻、玉米等主粮作物的重要研究课题 。将非加性遗传效应考虑进GS模型进行杂交种预测,也是当前基因组预测在作物育种中研究的热点之一 。

当然 ,杂种优势效应的组成也是随性状而变化的,不同性状的基因组预测需要与鉴定杂优QTL位点结合起来。由于一般配合力GCA(加性效应的反映)和特殊配合力SCA(非加性效应的反映)可能来自不同遗传效应,所以预测杂交种F 1 应该分别考虑GCA和SCA。GCA模型可以基于GBLUP ,重点在基因型亲缘关系矩阵构建 。SCA模型有两种方法:一是将杂优SNP位点的Panel作为固定效应整合进GBLUP模型中;二是使用非线性模型 ,如贝叶斯和机器学习方法。据报道,对于加性模型的中低遗传力性状,机器学习和一般统计模型比较一致。但在非加性模型中 ,机器学习方法表现更优 。

传统的GS模型往往只针对单个环境中的单个表型性状,忽略了实际情况中多性状间或多环境间的相互关系。一些研究通过对多个性状或多个环境同时进行建模,也能提高基因组预测的准确性。以多性状(Multi-trait ,MT)模型为例,多变量模型(Multivariate model,MV)可用如下公式表示:

多性状选择一般用于性状间共有某种程度的遗传构建 ,即在遗传上是相关的 。尤其适用于对低遗传力性状(伴随高遗传力性状相关)或者难以测量的性状。

农作物的环境条件不如动物容易控制,而且大部分性状都是数量性状,很容易受到环境影响。多环境(Multi-environment ,ME)试验发挥了重要作用,基因型与环境互作(Genotype by E nvironment,G × E)效应也是当前基因组选择关注的焦点 。

除了GBLUP ,多变量模型也可基于贝叶斯框架的线性回归 ,或者基于非线性的机器学习方法。

我们知道,基因经过转录翻译以及一系列调控后才能最终体现在表型特征上,它只能在一定程度上反映表型事件发生的潜力。随着多组学技术的发展 ,整合多组学数据用于基因组预测也是目前GS研究的一个重要方向 。

在植物育种中,除基因组外,转录组学和代谢组学是当前GS研究相对较多的两个组学 。转录组将基因表达量与性状进行关联预测 ,代谢组则将调控表型的小分子含量与性状进行关联预测,对于某些特定的性状而言,可能会提高预测能力。最好的方法是将各个组学的数据共同整合进模型 ,但这样会大大增加模型的复杂度。

表型测定的准确性直接影响模型的构建 。对于一些复杂性状,单凭肉眼观察记录显然已不可取,而且表型调查费时费力 ,成本很高。因此,高通量表型组也是GS发展的重要方向。表型的范畴非常之广,当个体性状不可简单测量时 ,我们也可采用多组学数据 ,如蛋白组 、代谢组等数据来替代 。

考虑到成本效益问题,多组学技术在动植物育种中仍处于研究阶段,但代表了未来的应用方向。

(一)MAS与QTL

现代数量遗传学的原理和方法在猪育种实践中的应用取得了巨大成功 ,如今它对一些遗传力高且呈连续性正态分布的数量性状仍然是必不可少的选择方法。但对于低遗传力性状,如母猪的产仔数等,选择反应并不理想 。因此 ,动物遗传育种学家从分子遗传水平上找到性状的遗传差异或与数量性状连锁的遗传标记,从而实现真正的基因型选择。分子遗传学及测定技术的飞速发展,对家畜基因组分析的深入研究起了有力的推动作用。通过基因组分析可以从核酸水平认识遗传物质 ,鉴定基因功能单元及摸清其作用机理并确定控制表型性状的基因或与该基因紧密连锁的遗传标记,在此基础上可对家畜直接进行基因型选择或标记辅助选择,且不受性别、时间和环境等因素的影响 。基因组分析有多种方法 ,候选基因法和连锁分析法是鉴定数量性状基因位点的两种基本方法,它们分别用候选基因或遗传标记与表型性瘃进行连锁分析来鉴定或定位数量性状基因位点。连锁分析法至今引人注目,在欧美等国几年前就已开展了研究 ,该方法需要建立参考家系 ,耗资巨大;而候选基因法具有统计功效强、应用广 、费用低和操作简单等优点,适合在我国现阶段开展研究。

Stam(1986)提出通过限制性片段长度多态性(RFLP),可对生物有机体的基因组进行标记 ,利用标记基因型能非常准确地估计数量性状的育种值,以该育种值为基础的选择,称为标记辅助选择(marker assisted selection,MAS) 。Lander和Thompson(1990)定义标记辅助选择 ,为把分子遗传学方法和人工选择相结合达到农艺性状(agricultural traits)最大的遗传改进,人们进一步将MAS定义为以分子遗传学和遗传工程为手段,在连锁分析的基础上 ,运用现代育种原理和方法,实现农艺性状最大的遗传改进 。

数量性状位点(QTL)指占据一特定染色体区域的微效多基因群。它可能控制某个经济性状并存在与某个易于检测的DNA分子标记紧密连锁的可能性。因此,利用分子生物学技术探测猪DNA标记 ,分析遗传标记与重要经济性状的遗传连锁关系,是当今世界猪遗传育种研究的焦点 。

MAS是通过对遗传标记的选择,间接实现对控制某性状的QTL的选择 ,从而达到对该性状进行选择的目的;或者通过遗传标记来预测个体基因型值或育种值。然而 ,MAS的效能虽受取样及分析方法的影响,但更主要的是取决于所选用的遗传标记及QTL,并对它们分别有严格的要求。分子标记辅助选择 ,显著地为改良像猪产仔数遗传力低的生产性状提供了新的途径 。但有效地利用分子标记作辅助选择的前提条件是:控制这类性状的基因必须精确定位。基因被定位克隆后,这下地基因如何调控生产性状表型或参与相关生化途径的遗传规律就可以得到阐明。

MAS具有的优点是:当起始基因位点之间连锁不平衡值很大时,标记位点选择比直接选择更有效 ,这一点在清除隐性有害基因时非常明显;不受性别的限制,如繁殖性状;早期选择,如繁殖性状和胴体性状;节省成本 。

关于“基因的选择性表达和基因重组的关系 ”这个话题的介绍 ,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[天蓝]投稿,不代表TJhao立场,如若转载,请注明出处:https://www.51tjs.cn/sygl/202508-72602.html

(4)

文章推荐

  • 必学教你安装“黄山麻将规则,推荐5个购买渠道

    您好:这款游戏可以开挂,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的点击添加客服微信1.这款游戏可以开挂,确实是有挂的,通过添加客服微2.在"设置DD功能DD微信手

    2025年03月18日
    5
  • 必学教你安装“微乐卡五星外挂”(其实确实有挂)

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年03月18日
    7
  • 我来教大家“微乐广东麻将助赢神器”其实确实有挂

    您好:这款游戏可以开挂,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的点击添加客服微信1.这款游戏可以开挂,确实是有挂的,通过添加客服微2.在"设置DD功能DD微信手

    2025年03月18日
    8
  • 必看教程“福建兄弟十三水专用平台辅助器(怎么打才会赢)

    亲,2024微乐麻将插件安装这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件.点击添加客服微信微信打麻将是一款非常流行的棋牌游戏,深

    2025年03月19日
    6
  • 教程辅助“微乐河北麻将挂神器(小程序提高胜率)

    熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,点击添加客服微信包括如何和牌、胡牌、、碰、等。只有了解了规则,才能更好地制定策略。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情

    2025年03月19日
    7
  • 6分钟学会“微乐保皇怎么抓好牌几率大”(提高胜率)

    您好:这款游戏可以开挂,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的点击添加客服微信1.这款游戏可以开挂,确实是有挂的,通过添加客服微2.在"设置DD功能DD微信手

    2025年08月20日
    3
  • 6分钟学会“天天斗牌大联盟有外挂的吗,推荐2个购买渠道

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年08月22日
    2
  • 玩家必看教程“友友联盟棋牌有挂吗”(详细透视教程)-哔哩哔哩

    熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,点击添加客服微信包括如何和牌、胡牌、、碰、等。只有了解了规则,才能更好地制定策略。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情

    2025年08月23日
    4
  • 5分钟科普“大秦娱乐辅助”(提高胜率)

    2024微乐麻将插件安装是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。2024微乐麻将插件安装可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅

    2025年08月31日
    3
  • 必看教程“开心斗一番辅助(确实真的有挂)

    您好:这款游戏可以开挂,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的点击添加客服微信1.这款游戏可以开挂,确实是有挂的,通过添加客服微2.在"设置DD功能DD微信手

    2025年09月03日
    3

发表回复

本站作者后才能评论

评论列表(4条)

  • 天蓝
    天蓝 2025年08月26日

    我是TJhao的签约作者“天蓝”!

  • 天蓝
    天蓝 2025年08月26日

    希望本篇文章《8分钟科普“小吆湖南麻将软件”(详细透视教程)-哔哩哔哩》能对你有所帮助!

  • 天蓝
    天蓝 2025年08月26日

    本站[TJhao]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育

  • 天蓝
    天蓝 2025年08月26日

    本文概览:熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,...

    联系我们

    邮件:TJhao@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们